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Chaotic one-dimensional harmonic oscillator

Seung-Woo Lee and Hai-Woong Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

~Received 16 July 1997!

We present one of the simplest systems that exhibit resonance overlap and chaos: a nonrelativistic one-
dimensional simple harmonic oscillator driven by a space-time varying force. The theoretical study of nonlin-
ear resonances can be carried out analytically using second-order canonical perturbation theory.
@S1063-651X~97!05411-1#
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I. INTRODUCTION

The simple harmonic oscillator represents a standard
ear system that always behaves regularly even when a t
varying external force is present. It has been shown rece
however, that the simple harmonic oscillator driven by
time-periodic force can exhibit chaos if the motion becom
relativistic @1#. In this paper we show that the simple ha
monic oscillator, even in the nonrelativisic regime, can b
have chaotically if it is driven by an external force that var
in both time and space. A special type of space-tim
dependent force that varies periodically both in time and
space applied to a simple harmonic oscillator is encounte
frequently in plasma physics in relation to the cyclotron m
tion of a charged particle interacting with an electromagne
wave @2–5#. Here we consider a more general class o
space-time–varying force and show, using canonical per
bation theory@6#, that the force generates a series of nonl
ear resonances in the phase space of the oscillator. As is
known, when the neighboring resonances overlap, chaos
curs.

Since the simple harmonic oscillator is a linear syst
whose period of oscillation is independent of energy, o
must go beyond first-order perturbation theory in order
show that nonlinear resonances are generated. Yet, due t
simplicity of the system, calculations can be carried out a
lytically without difficulty, at least to second order of pertu
bation. The significance of the system described in
present work is that it is one of the simplest systems t
exhibit resonance overlap and chaos and that it represe
system on which high-order canonical perturbation the
can be performed analytically.

II. SYSTEM

Let us consider a nonrelativistic one-dimensional sim
harmonic oscillator of massm and frequencyw0 driven by
an external forceF(q,t) that varies with the spatial coord
nateq as well as with timet. The Hamiltonian for the oscil-
lator can be written as

H~q,p,t !5
p2

2m
1

1

2
mw0

2q22Eq

F~q8,t !dq8. ~1!

We limit ourselves to the case where the forceF(q,t) is
periodic in timet with frequencyw52p/T. We also assume
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thatF(q,t) is an even function oft and that*0
TF(q,t)dt50.

We can then expressF(q,t) in Fourier series as

F~q,t !5F0(
n51

`

an~q!cosnwt, ~2!

where F0 is a constant that measures the strength of
applied force.

In order to apply canonical perturbation theory to the s
tem being considered, it is convenient to go to the acti
angle space. For the simple harmonic oscillator the ac
and angle variablesI ,u are related toq,p by @7#

q5~2I /mw0!1/2cosu, p52~2mw0I !1/2sinu. ~3!

Substituting Eqs.~2! and~3! into Eq.~1!, we can express the
Hamiltonian as

H~ I ,u,t !5w0I 2F0 (
n51

`

(
m50

`

anm~ I !cosmu cosnwt

5w0I 2
F0

2 (
n

(
m

anm~ I !@cos~mu1nwt!

1cos~mu2nwt!#, ~4!

where the coefficientsanm(I ) can be determined froman’s.
Equation~4! indicates that nonlinear resonances occu

the condition

m
du

dt
5nw ~5!

is satisfied. In the standard perturbation treatment of the
namics of a driven oscillator, the quantitydu/dt is usually
taken as the frequency in the lowest order of perturbati
i.e., as the frequency of oscillation in the absence of an
ternal force. Equation~5! then becomes, for our case of th
simple harmonic oscillator,

mw05nw. ~6!

Equation~6! is totally independent of the oscillator energ
and thus the formation of nonlinear resonances in differ
regions of phase space is not indicated. One should kee
mind, however, that the frequency of oscillation in the pre
ence of an external force is in general different from that
5245 © 1997 The American Physical Society
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the absence of an external force. We show below that, e
for our case of the simple harmonic oscillator, application
a spatially varying external force indeed shifts the freque
of oscillation from its natural valuew0. In order to show that,
we need to carry canonical perturbation theory at leas
second order.

III. SECOND-ORDER PERTURBATION THEORY

In the canonical perturbation theory@6#, one seeks a ca
nonical transformation from the usual action-angle variab
(I ,u) to a new set of action-angle variables (J,f), which
allows an identification of an invariant to a desired order
perturbation. The generating function for the desired tra
formation is written as

S~J,u,t !5Ju1eS1~J,u,t !1e2S2~J,u,t !1•••, ~7!

where the Hamiltonian of Eq.~4! is now written as

H~ I ,u,t !5w0I 2e
F0

2 (
n

(
m

anm~ I !@cos~mu1nwt!

1cos~mu2nwt!#. ~8!

e is a parameter introduced to identify the driving for
terms as the perturbation and will be sete51 at the end of
the calculation. The relation between the old and new set
the action-angle variables is given by

I 5
]S

]u
5J1e

]S1~J,u,t !

]u
1e2

]S2~J,u,t !

]u
1•••, ~9!

f5
]S

]J
5u1e

]S1~J,u,t !

]J
1e2

]S2~J,u,t !

]J
1••• ~10!

and the transformed Hamiltonian is

K~J,f,t !5H~ I ,u,t !1
]S~J,u,t !

]t
. ~11!

Substituting Eqs.~7! and~8! into Eq. ~11! and utilizing Eqs.
~9! and ~10! to collect terms of the same order ine, we
obtain

K~J,f,t !5w0J1eH w0

]S1

]u
1

]S1

]t
2

F0

2 (
n

(
m

anm~J!

3@cos~mu1nwt!1cos~mu2nwt!#J
1e2H w0

]S2

]u
1

]S2

]t

2
F0

2 (
n

(
m

danm~J!

dJ

]S1

]u
@cos~mu1nwt!

1cos~mu2nwt!#J 1•••. ~12!
en
f
y

to

s

f
s-

of

The generating functionsS1(J,u,t) andS2(J,u,t) are now to
be chosen to eliminate theu- and t-dependent parts ofK to
first and second order, respectively, ine. We thus have, for
S1,

w0

]S1~J,u,t !

]u
1

]S1~J,u,t !

]t
5

F0

2 (
n

(
m

anm~J!@cos~mu

1nwt!1cos~mu2nwt!#

2
F0

2 K (
n

(
m

anm~J!

3@cos~mu1nwt!

1cos~mu2nwt!#L , ~13!

where the angular brackets denote a quantity averaged ovu
and t, i.e.,

^ f ~u,t !&5
1

2pE0

2p

du
1

TE0

T

dt f~u,t !. ~14!

Noting that the last term on the right-hand side of Eq.~13!
vanishes, we can solve Eq.~13! for S1 and obtain

S1~J,u,t !5
F0

2 (
n

(
m

anm~J!Fsin~mu1nwt!

mw01nw

1
sin~mu2nwt!

mw02nw G . ~15!

Substituting Eq.~15! into Eq. ~12! and requiring the term
proportional toe2 be independent ofu and t, we can simi-
larly determineS2(J,u,t). With S1 and S2 determined as
above, the Hamiltonian given by Eq.~12! can now be written
as

FIG. 1. Frequency of oscillationV as a function ofJ. The
curves from bottom to top correspond to the case whereF053, 4, 5,
and 6 ~in arbitrary units!, respectively. The parameters arem51,
w052p, andw51 ~in arbitrary units!.
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FIG. 2. Poincare´ phase-space plots for the case whereF0 is ~a! 3, ~b! 4, ~c! 5, ~d! 6, ~e! 7, ~f! 8, ~g! 9, and~h! 10 ~in arbitrary units!. The
parameters arem51, w052p, andw51 ~in arbitrary units!.
he
K~J,f,t !5w0J1eK1~J!1e2K2~J!1e3K3~J,f,t !1•••,
~16!

where

K1~J!52
F0

2 K (
n

(
m

anm~J!@cos~mu1nwt!

1cos~mu2nwt!#L
50 ~17!

and

K2~J!52
F0

2 K (
n

(
m

danm~J!

dJ

]S1~J,u,t !

]u
@cos~mu1nwt!

1cos~mu2nwt!#L . ~18!
Substitution of Eq.~15! into Eq. ~18! yields

K2~J!52
F0

2

8 (
n

(
m

d@anm~J!#2

dJ

m2w0

~mw01nw!~mw02nw!
.

~19!

We note that, to second order ine, the new action variableJ
is a constant of motion. The frequency of oscillation in t
presence of an external force, which we denote byV, can
now be determined, to second order ine, by

V~J!5
]K

]J
5w01e

]K1

]J
1e2

]K2

]J
. ~20!

Substituting Eqs.~17! and ~19! into Eq. ~20! and setting
e51, we obtain
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V~J!5w02
F0

2

8 (
n

(
m

d2@anm~J!#2

dJ2

3
m2w0

~mw01nw!~mw02nw!
. ~21!

The resonance condition~5! now becomes

mV~J!5nw. ~22!

Since the frequencyV varies withJ and thus with the oscil-
lator energy, nonlinear resonances can be generated in
ferent regions of phase space and chaotic motion can o
when neighboring resonances overlap. We illustrate this w
an example in Sec. IV.

Before closing this section, we consider briefly the sim
case when the driving force is independent of the spa
coordinate. TakingF5F0coswt, we have

H5
p2

2m
1

1

2
mw0

2q22qF0coswt

5w0I 2F0S 2I

mw0
D 1/2

cosu coswt. ~23!

A comparison with Eq.~4! immediately yields

anm~ I !5~2I /mw0!1/2dn1dm1 . ~24!

Sinced2@a11(J)#2/dJ250, we obtain, from Eq.~21!,

V~J!5w0 . ~25!

Equation~25! indicates that, when the driving force is ind
pendent of the spatial coordinate, the frequency of the dri
simple harmonic oscillator is the same as the natural
quency of the undriven oscillator and thus nonlinear re
nances cannot be generated.

IV. EXAMPLE

As an illustration of a spatially varying time-period
force that leads to generation of nonlinear resonances
if-
ur

th

e
al

n
-
-

nd

eventually to chaotic motion of a simple harmonic oscillat
we take

F~q,t !52F0~12q2!u~ t !, ~26!

whereu(t) represents a square wave in timet given by

u~ t !5H 1 if 2np2
p

2
<t<2np1

p

2

21 otherwise.

~27!

The functionu(t) can be expanded in Fourier series as

u~ t !5
4

pFcoswt2
1

3
cos 3wt1

1

5
cos 5wt1••• G

5
4

p (
n51

`
~21!n11

2n21
cos~2n21!wt. ~28!

The Hamiltonian for the oscillator is given by

H~q,p,t !5
p2

2m
1

1

2
mw0

2q21F0S q2
q3

3 Du~ t !

5w0I 1F0H F S 2I

mw0
D 1/2

2
1

4S 2I

mw0
D 3/2Gcosu

2
1

12S 2I

mw0
D 3/2

cos 3uJ u~ t !. ~29!

Comparing Eq.~29! with Eq. ~4!, we obtain

a~2n21!1~ t !52F S 2I

mw0
D 1/2

2
1

4S 2I

mw0
D 3/2G 4

p

~21!n11

2n21
,

~30!

a~2n21!3~ t !5
1

12S 2I

mw0
D 3/2 4

p

~21!n11

2n21
, ~31!

a~2n!1~ t !5a~2n!3~ t !50, ~32!

an2~ t !5an4~ t !5an5~ t !5an6~ t !5•••50. ~33!

The generating functionS1 is then determined by Eq.~15! as
S1~J,u,t !52
2F0

p F S 2J

mw0
D 1/2

2
1

4S 2J

mw0
D 3/2G (

n51

`
~21!n11

2n21 H sin@~u1~2n21!wt#

w01~2n21!w
1

sin@u2~2n21!wt#

w02~2n21!w J
1

F0

6pS 2J

mw0
D 3/2

(
n51

`
~21!n11

2n21 H sin@3u1~2n21!wt#

3w01~2n21!w
1

sin@3u2~2n21!wt#

3w02~2n21!w J . ~34!

Finally, the frequencyV(J) can be obtained by substituting Eqs.~30!–~33! into Eq. ~21!. We have

V~J!5w02
2F0

2

p2 H ]2

]J2F S 2J

mw0
D 1/2

2
1

4S 2J

mw0
D 3/2G2

(
n

1

~2n21!2

w0

@w01~2n21!w#@w02~2n21!w#

1
1

122

]2

]J2S 2J

mw0
D 3

(
n

1

~2n21!2

9w0

@3w01~2n21!w#@3w02~2n21!w#J . ~35!
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In Fig. 1 we showV as a function ofJ for different
values ofF0. The parameter values chosen for our compu
tion arem51, w052p, and w51 ~in arbitrary units!. We
note that for the parameter values chosen as above an
the range ofJ considered, high-order terms in Eq.~35! can
be neglected. In fact, it is usually sufficient to consider o
the first two terms (n51 and 2) in the first series and th
first term (n51) in the second series on the right-hand s
of Eq. ~35!. Figure 1 indicates that the resonance condit
V/w5n/m561

3 can be met ifF0 is greater than a critica
value that lies between 3 and 4. The value ofJ at which that
resonance condition is satisfied increases asF0 is increased
beyond the critical value. We mention here that with the ra
w0 /w52p as chosen above, the resonance correspondin
the conditionV/w561

3 is the first one to appear when a
external force is applied.

In Fig. 2 we show Poincare´ maps obtained by numericall
integrating Hamilton’s equations of motion for the drive
simple harmonic oscillator being considered and by mark
the phase-space positions of the oscillator att5nT52pn/w.
The resonance islands corresponding toV/w561

3 that are

TABLE I. Location of the elliptic and hyperbolic fixed points o
the 61

3 resonance for various values ofF0, determined theoretically
using the second-order perturbation theory and numerically f
the computed Poincare´ plots. Only the fixed points whosep value is
zero are considered.

Theoretical Numerical
F0 Elliptic Hyperbolic Elliptic Hyperbolic

4 0.59 20.73 0.54 20.70
5 1.01 21.14 0.96 21.15
6 1.18 21.30 1.11 21.33
7 1.27 21.40 1.19 21.44
8 1.33 21.45 1.22

FIG. 3. Poincare´ phase-space plot atF053.665 ~in arbitrary

units! at which the 613 resonance is generated.
-

for

e
n

o
to

g

missing atF053 are clearly seen atF054 and at higher
values ofF0. It can also be observed that, asF0 is increased,
the elliptic fixed points of the resonance move outward fro
the origin. One can also see clearly that atF058 resonance
islands corresponding toV/w563

7 appear and that atF059

those corresponding toV/w561
2 are generated. It is eviden

that atF059 the 61
3 and 63

7 resonances overlap and produ
the region of chaos. This chaotic sea is seen to occup
large portion of the phase space atF0510.

The location of the fixed points of the resonances can
estimated by straightforward algebra as follows. For a giv
value ofF0 we first solve Eq.~35! to obtain the value ofJ
that yieldsV corresponding to the resonance being cons

ered, sayV561
3 if the fixed points of the 613 resonance are to

be determined. We then substitute this value ofJ into Eq.
~9!, take t52pn/w, and assign an appropriate value ofu,
which allows determination of the value ofI corresponding
to the fixed point. If, for example, the position of the ellipt

~hyperbolic! fixed point of the 613 resonance lying on the
positive ~negative! q axis of Fig. 2 is to be determined, th
valueu50 (p) should be chosen. The locations of the elli
tic and hyperbolic fixed points calculated as above are sho

m

FIG. 4. Poincare´ phase-space plots at~a! F058.29 and ~b!
F058.3 ~in arbitrary units! at which the 612 resonance is generated
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in Table I for the 613 resonance along with those determin
numerically. The agreement between the two sets is see
be reasonably good.

In Figs. 3 and 4 we present Poincare´ maps at the birth of

the 61
3 and 61

2 resonances, respectively. The elliptic and h

perbolic fixed points of the 613 resonance are generated v

saddle-node bifurcations, whereas those of the 61
2 resonance

are generated via period-doubling bifurcations. These bi
cation sequences as described in the figures are cons
with the theorem of Meyer@8,9#.

V. CONCLUSION AND DISCUSSION

We have shown that the nonrelativistic one-dimensio
simple harmonic oscillator driven by a space-time depend
force can exhibit resonance overlap and chaos. This re
sents one of the simplest systems known to exhibit chao

It should be emphasized that in order for an oscillator
show chaotic behavior arising from resonance overlap, n
linear resonances should be generated in different ph
space regions of the oscillator, which in turn requires that
oscillation frequency varies with respect to energy. The r
son why the time-driven simple harmonic oscillator can b
.

ys

.

to

-

r-
ent

l
nt
e-

o
n-
e-
e
-
-

have chaotically when it moves at relativistic velocities
because its frequency is no longer constant in the relativi
region @1#. In the nonrelativistic region, the oscillation fre
quency of a simple harmonic oscillator remains consta
even if a time-varying force is applied. What we have sho
in this work is that the frequency of the nonrelativist
simple harmonic oscillator is shifted and becomes ene
dependent in the presence of a spatially varying exte
force. The frequency shift of the same nature occurs whe
time-varying force is applied to the relativistic oscillator
constant period@10#. A proper treatment of the frequenc
shift and consequently of the nonlinear resonances and c
occurring in the present system requires canonical pertu
tion theory to be carried at least to second order. Calculati
required, however, are all straightforward and can be p
formed using elementary functions only.
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