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Chaotic one-dimensional harmonic oscillator
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We present one of the simplest systems that exhibit resonance overlap and chaos: a nonrelativistic one-
dimensional simple harmonic oscillator driven by a space-time varying force. The theoretical study of nonlin-
ear resonances can be carried out analytically using second-order canonical perturbation theory.
[S1063-651X97)05411-1

PACS numbd(s): 05.45+b, 03.20-+i

I. INTRODUCTION thatF(q,t) is an even function of and thatf jF(q,t)dt=0.
We can then expreds(q,t) in Fourier series as

The simple harmonic oscillator represents a standard lin-
ear system that always behaves regularly even when a time-
varying external force is present. It has been shown recently, F(a,)= Fonzl an(q)cowt, 2
however, that the simple harmonic oscillator driven by a
time-periodic force can exhibit chaos if the motion becomesyhere F, is a constant that measures the strength of the
relativistic [1]. In this paper we show that the simple har- applied force.
monic oscillator, even in the nonrelativisic regime, can be- |n order to apply canonical perturbation theory to the sys-
have chaotically if it is driven by an external force that variestem being considered, it is convenient to go to the action-
in both time and space. A special type of space-time-angle space. For the simple harmonic oscillator the action

dependent force that varies periodically both in time and inand angle variablek, 6 are related tay,p by [7]
space applied to a simple harmonic oscillator is encountered

frequently in plasma physics in relation to the cyclotron mo- q=(2l/uwo)Y%coss, p=—(2uwyl)¥%sing. (3)
tion of a charged particle interacting with an electromagnetic o )
wave [2-5]. Here we consider a more general class of aSubstituting Eqs(2) and(3) into Eq. (1), we can express the
space-time—varying force and show, using canonical pertuttiamiltonian as
bation theony[ 6], that the force generates a series of nonlin- o o
ear resonances in the phase space of the oscillator. As is well
known, when the neigkﬁ)boring Fr)esonances overlap, chaos oc- H(1, 6,0 =wol =Fo ngl mE:O cnnfl)cOSME cosnwt
curs.

Since the simple harmonic oscillator is a linear system _ Fo
whose period of oscillation is independent of energy, one _WOI_? ; % anm(1)[cOgME+nwy
must go beyond first-order perturbation theory in order to
show that nonlinear resonances are generated. Yet, due to the +cogmo—nwt)], (4)
simplicity of the system, calculations can be carried out ana- - . ,
lytically without difficulty, at least to second order of pertur- where thg coeff|0|§nt&nm(l) can b.e determined fromy’s. :
bation. The significance of the system described in the Equatl'o.n(4) indicates that nonlinear resonances occur if
present work is that it is one of the simplest systems that"® condition
exhibit resonance overlap and chaos and that it represents a de
system on which high-order canonical perturbation theory mM— =
can be performed analytically. dt

o

nw 5

is satisfied. In the standard perturbation treatment of the dy-
Il. SYSTEM namics of a driven oscillator, the quantityg/dt is usually

Let us consider a nonrelativistic one-dimensional simplg@ken as the frequency in the lowest order of perturbation,
harmonic oscillator of masa and frequencyw, driven by I.e., as the frequenpy of oscillation in the absence of an ex-
an external forcé=(q,t) that varies with the spatial coordi- tgrnall fc;}rce. EquatlorplIS) then becomes, for our case of the
nateq as well as with time.. The Hamiltonian for the oscil- S'MPle harmonic oscillator,

lator can be written as MW= NW. (6)

2

1 q i i i i
H(q.p.t)= Zp_,u+ E,uwng—f F(q'.0)dq. 1) Equation(6) is totally independent of the oscillator energy

and thus the formation of nonlinear resonances in different
regions of phase space is not indicated. One should keep in
We limit ourselves to the case where the folefg,t) is  mind, however, that the frequency of oscillation in the pres-
periodic in timet with frequencyw=27/T. We also assume ence of an external force is in general different from that in
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the absence of an external force. We show below that, evel
for our case of the simple harmonic oscillator, application of
a spatially varying external force indeed shifts the frequency

of oscillation from its natural valuev,. In order to show that,

we need to carry canonical perturbation theory at least tc

second order.

IIl. SECOND-ORDER PERTURBATION THEORY

In the canonical perturbation theof§], one seeks a ca-

nonical transformation from the usual action-angle variables

(1,0) to a new set of action-angle variable3, ¢), which

allows an identification of an invariant to a desired order of
perturbation. The generating function for the desired trans-

formation is written as

S(3,0,t) =30+ €S,(J,0,t) + €S,(3,0,t)+- -, (7)
where the Hamiltonian of Eq4) is now written as
H(I,B,t)zwol—e%in: Em‘, anm(1)[cogmo+nwt)
+cogmé—nwt)]. (8)
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FIG. 1. Frequency of oscillatiof as a function ofJ. The
curves from bottom to top correspond to the case wkgre3, 4, 5,
and 6 (in arbitrary unitg, respectively. The parameters aue=1,

=2, andw=1 (in arbitrary unit3.

The generating functiors;(J, 8,t) andS,(J, 6,t) are now to
be chosen to eliminate the andt-dependent parts df to
first and second order, respectively,énWe thus have, for

€ is a parameter introduced to identify the driving force S;,

terms as the perturbation and will be et 1 at the end of

the calculation. The relation between the old and new sets of

the action-angle variables is given by

S 951(3,6,)  ,35,(3,6,)
|= g =dte—

©)

S

S,(J,0,t)
¢—5—0+6 +e

9S,(J,6,t) N
dd

2N

(10

and the transformed Hamiltonian is

dS(J,6,t)

K(J,¢,t)=H(l,0,t)+ it

(11)

Substituting Eqs(7) and(8) into Eq.(11) and utilizing Egs.
(9) and (10) to collect terms of the same order ¥ we
obtain

IS,

(931 0
o5t T ol

K(J1¢1t):WOJ+ E[
X[cogm#+ nwt) +cogmo— nwt)]]

7%, S
Yol T ot

bR

+ €2

d J) dS
anm() 1[cos{m¢9+nwt)

+cos{m0—nwt)]] + (12

7510,60)  9S13,6) _Fo

Wo— - 5 2 2 ann(J)[cogmd

+nwt)+cogmé—nwt)]
_?<§n: Em: apm(J)
X[cogmé+ nwt)

+cogmeo— nwt)]> , (13

where the angular brackets denote a quantity averageddover

andt, i.e.,

(0,0)=— [ "do= Jdt f(6,1). (14)
0

Noting that the last term on the right-hand side of Ep)
vanishes, we can solve E(L3) for S; and obtain

sin(mé+ nwt)
mwy+nNw

OZEQnm

sin(mé—nwt)
+—|.
mw,—nNw

S1(J,6,t)=

(15

Substituting Eq.(15) into Eq. (12) and requiring the term
proportional toe® be independent of andt, we can simi-
larly determineS,(J,6,t). With S; and S, determined as
above, the Hamiltonian given by E(.2) can now be written
as
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FIG. 2. Poincarghase-space plots for the case wheggs (a) 3, (b) 4, (¢) 5, (d) 6, (e) 7, () 8, (g) 9, and(h) 10 (in arbitrary unit3. The
parameters arg=1, wo= 27, andw=1 (in arbitrary units.

K(J,¢,t)=Wod+ eK(J) + €K () + €3K3(J, ,t) + - - -, Substitution of Eq(15) into Eq. (18) yields
(16)
where Fa d[ anm(3)1? m?w,
Kad)=- 22> 2 —
. 8% T dJ (mwy+nw)(mwg—nw)
Ky(3)=— ?°<2 > ann(d)[cogmo+nwt) 19
n m
We note that, to second order énthe new action variablé
+cogmé—nwt)] is a constant of motion. The frequency of oscillation in the
presence of an external force, which we denote(hycan
=0 (17)  now be determined, to second ordereinby
and
Q3 (9K_ N <9K1+ 2(3K2 20
dapm(d) 9S.(3,6.1) (D)=7g =Wot ey +e 75 20

+
70 [cogma+ nwt)

F

Substituting Egs(17) and (19) into Eqg. (20) and setting
+cogmo— nwt)]> . (18 e=1, we obtain
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F2 g2 )12 eventually to chaotic motion of a simple harmonic oscillator,
QJ)=wp— §0§n: %‘, % we take
F(a,t)=—Fo(1—a?)u(t), (26)

2
m-wg
(21) whereu(t) represents a square wave in tingiven by

X .
(Mmwy+nw)(Mmwy—nw)

The resonance conditiofs) now becomes 1 if 2nm— F<t=onmt+ =
u(t)= 2 2 (27)

mQ(J)=nw. (22) —1 otherwise.

Since the frequen_cyl varies withJ and thus with the oscil— _'1[he functionu(t) can be expanded in Fourier series as
lator energy, nonlinear resonances can be generated in dif-

ferent regions of phase space and chaotic motion can occur 4
when neighboring resonances overlap. We illustrate this with u(t)= | Coswt= =cos vt+ 5C0S SUSEEE
an example in Sec. IV.
Before closing this section, we consider briefly the simple 4.2 (-1t
case when the driving force is independent of the spatial = ;21 WCOS(ZH—l)Wt- (28
coordinate. Takind-=Fjcoswt, we have
2 4 The Hamiltonian for the oscillator is given by
H=-—+ - uw3q?— qFocoswt 2 3
22 H(q,p,t)=;—+§MW%q2+Fo q—%)u(t)
21 1/2 I
=Wl —FO(—> cos # coswt. (23 21 \12 1/ 2] \32
MWo =wgl +Fq [(—) ——(—) cos 6
. . . . . MWq 4 MWq
A comparison with Eq(4) immediately yields 1/ o o2
anm(1)= (21 uwg) Y281 61 . (24) - 1—2( M) cos 30] u(t). (29)
Sincedz[all(J)]Z/dJZZO, we Obtain, from Eq(21), Comparing Eq.(29) with Eq (4)’ we obtain
Q(‘]):WO' (25) 2] 1/2 1/ 2] 3/2 4 (_1)n+l
a(an-1)1(t)= _H—) - Z<_> }— =1
Equation(25) indicates that, when the driving force is inde- MWo MWo/ Jm 2N
pendent of the spatial coordinate, the frequency of the driven (30
simple harmonic oscillator is the same as the natural fre- 1( 21 \324 (—1)n+1
qguency of the undriven oscillator and thus nonlinear reso- aan-1)3(t)= 1—2( W ) —on—1 (31
nances cannot be generated. MWo/ T
@on1(t) = @(2n)3(1) =0, (32
IV. EXAMPLE
app(t) = ana(t) = aps(t) = apg(t)=-- - =0. (33

As an illustration of a spatially varying time-periodic
force that leads to generation of nonlinear resonances arnthe generating functio8, is then determined by E@15) as

S$:(J,6,t)=—

HWo

2F0< 2J )1/2 1( 2J )3/2 - (—1)"Hsin(0+(2n—L)wt] sin 6—(2n—1)wt]
T [\luwy 4 =1 2n—1 | wet+(2n—1)w wo—(2n—1)w

T 4

Fol 23 \3°& (—=1)"!(sin36+(2n—1)wt] sin36—(2n—1)wt] a4
6l awy) &4 2n—1 | 3wet(2n-Lw | 3wp—(2n—D)w (34
Finally, the frequency)(J) can be obtained by substituting E480)—(33) into Eq.(21). We have
0 2F3 aT( 2J )1’2 1( 2J )3’2}2 1 Wo
:W —_—— — —_— —_ | —_—
( O 22| 932\ mwo 4\ uwo n (2n—1)2 [Wo+(2n=1)w][wp—(2n—1)w]
1 ( 2J )3 1 9w, @5
122 932\ uWo) T (2n—1)2 [BWo+(2n=1)W][3wp—(2n—1)w] |
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TABLE I. Location of the elliptic and hyperbolic fixed points of
the 6 resonance for various values Bf, determined theoretically
using the second-order perturbation theory and numerically from
the computed Poincamots. Only the fixed points whogevalue is
zero are considered.

Theoretical Numerical
Fo Elliptic Hyperbolic Elliptic Hyperbolic
4 0.59 -0.73 0.54 —-0.70
5 1.01 -1.14 0.96 -1.15
6 1.18 -1.30 111 -1.33
7 1.27 —1.40 1.19 —1.44
8 1.33 —1.45 1.22

In Fig. 1 we show(Q as a function ofJ for different
values ofF,. The parameter values chosen for our computa-
tion areu=1, wo=2, andw=1 (in arbitrary units. We
note that for the parameter values chosen as above and for
the range of] considered, high-order terms in E@5) can
be neglected. In fact, it is usually sufficient to consider only
the first two terms =1 and 2) in the first series and the
first term (h=1) in the second series on the right-hand side
of Eq. (35). Figure 1 indicates that the resonance condition
Q/w=n/m=63 can be met ifF, is greater than a critical
value that lies between 3 and 4. The valuel @it which that
resonance condition is satisfied increase§ @ss increased
beyond the critical value. We mention here that with the ratio
Wo/w= 27 as chosen above, the resonance corresponding to
the conditionQ)/w=63 is the first one to appear when an
external force is applied.

In Fig. 2 we show Poincammaps obtained by numerically
integrating Hamilton’s equations of motion for the driven
simple harmonic oscillator being considered and by marking
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the phase-space positions of the oscillatdr=ab T=27n/w.
The resonance islands corresponding(tow=63 that are

! | ! I ! I ' ) I I ! |
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FIG. 3. Poincarephase-space plot & ,=3.665 (in arbitrary
units) at which the é resonance is generated.

FIG. 4. Poincarephase-space plots &8 F,=8.29 and(b)
Fo=28.3 (in arbitrary unit3 at which the § resonance is generated.

missing atF,=3 are clearly seen & ,=4 and at higher
values off. It can also be observed that, lagis increased,
the elliptic fixed points of the resonance move outward from
the origin. One can also see clearly thaFgt=8 resonance
islands corresponding t/w=62 appear and that &&,=9

those corresponding ®@/w=63 are generated. It is evident

that atF,=9 the & and 6 resonances overlap and produce
the region of chaos. This chaotic sea is seen to occupy a
large portion of the phase spacefRg=10.

The location of the fixed points of the resonances can be
estimated by straightforward algebra as follows. For a given
value of F we first solve Eq(35) to obtain the value o8
that yields() corresponding to the resonance being consid-
ered, say) =63 if the fixed points of the resonance are to
be determined. We then substitute this valueldhto Eq.

(9), taket=2mn/w, and assign an appropriate value &f
which allows determination of the value bfcorresponding

to the fixed point. If, for example, the position of the elliptic
(hyperbolig fixed point of the § resonance lying on the
positive (negative g axis of Fig. 2 is to be determined, the
value #=0 () should be chosen. The locations of the ellip-
tic and hyperbolic fixed points calculated as above are shown
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in Table | for the § resonance along with those determinedhave chaotically when it moves at relativistic velocities is
numerically. The agreement between the two sets is seen Rfcause its frequency is no longer constant in the relativistic
be reasonably good. region[1]. In the nonrelativistic region, the oscillation fre-
In Figs. 3 and 4 we present Poincanaps at the birth of dquency of a simple harmonic oscillator remains constant,
the 6% and 6 resonances, respectively. The elliptic and hy-EVen if a time-varying force is applied. What we have shown
o . ~in this work is that the frequency of the nonrelativistic
perbolic fixed points of the Hresonance are generated via simple harmonic oscillator is shifted and becomes energy
saddle-node bifurcations, whereas those of theeSonance dependent in the presence of a spatially varying external
are generated via period-doubling bifurcations. These bifurforce. The frequency shift of the same nature occurs when a
cation sequences as described in the figures are consistdithe-varying force is applied to the relativistic oscillator of

with the theorem of Meye}l8,9]. constant period10]. A proper treatment of the frequency
shift and consequently of the nonlinear resonances and chaos
V. CONCLUSION AND DISCUSSION occurring in the present system requires canonical perturba-

tion theory to be carried at least to second order. Calculations

- We have Sh_OWh that the -noanIatiViStiC On-e'dimenSionaIfequired’ however, are all Straightforward and can be per-
simple harmonic oscillator driven by a space-time dependenprmed using elementary functions only.

force can exhibit resonance overlap and chaos. This repre-
sents one of the simplest systems known to exhibit chaos.
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